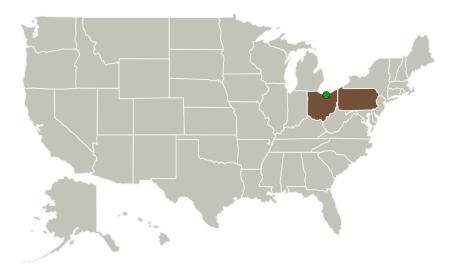
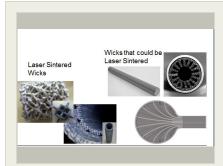
Additive Manufacturing of Heat Pipe Wicks, Phase I



Completed Technology Project (2014 - 2014)


Project Introduction

Wick properties are often the limiting factor in a heat pipe design. Current technology uses conventional sintering of metal powders, screen wick, or grooves to fabricate realtively simplistic wick geometries. Additive manufacturing (laser sintering) of a porous structure would allow much greater freedom in defining the wick geometry and properties. One example is the RDU thermosyphon wick. Valuable real estate was consumed for a liquid reservoir for freeze/thaw tolerance. A more complex laser-sintered geometry could put the reservoir in the center, allowing greater evaporator area, lower heat flux, and lower DT. Another example is loop heat pipes, which are in limited use due to the cost. Laser sintering of an LHP directly in to the evaporator bodye could greatly lower cost, making LHP vaible for commercial use. Applying laser sintering to develop complex wick geometries can greatly extend heat pipe heat transport capabilities and lower cost.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Thermacore, Inc.	Lead Organization	Industry	Lancaster, Pennsylvania
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Additive Manufacturing of Heat Pipe Wicks Project Image

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Additive Manufacturing of Heat Pipe Wicks, Phase I

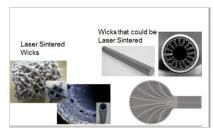
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
Ohio	Pennsylvania	

Project Transitions

0

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137507)

Images

Project Image

Additive Manufacturing of Heat Pipe Wicks Project Image (https://techport.nasa.gov/imag e/129505)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Thermacore, Inc.

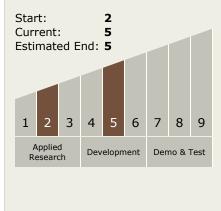
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

John Thayer

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Additive Manufacturing of Heat Pipe Wicks, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

